Optimal Policy Without Rational Expectations: A Sufficient Statistic Solution

Jonathan Adams – University of Florida

Drexel University School of Economics - October 18 2024

• Without Full Info Rational Expectations (FIRE): economic outcomes are typically inefficient

- Without Full Info Rational Expectations (FIRE): economic outcomes are typically inefficient
- What can policymakers do about it?

- Without Full Info Rational Expectations (FIRE): economic outcomes are typically inefficient
- What can policymakers do about it?
- Typical approach:

- Without Full Info Rational Expectations (FIRE): economic outcomes are typically inefficient
- What can policymakers do about it?
- Typical approach:
 - 1. Write down a structural model describing the whole economy

- Without Full Info Rational Expectations (FIRE): economic outcomes are typically inefficient
- What can policymakers do about it?
- Typical approach:
 - 1. Write down a structural model describing the whole economy
 - 2. Make some assumption about how agents form expectations without FIRE

- Without Full Info Rational Expectations (FIRE): economic outcomes are typically inefficient
- What can policymakers do about it?
- Typical approach:
 - 1. Write down a structural model describing the whole economy
 - 2. Make some assumption about how agents form expectations without FIRE
 - 3. Solve the optimal policy problem

- Without Full Info Rational Expectations (FIRE): economic outcomes are typically inefficient
- What can policymakers do about it?
- Typical approach:
 - 1. Write down a structural model describing the whole economy
 - 2. Make some assumption about how agents form expectations without FIRE
 - 3. Solve the optimal policy problem
- Lack of generality is a problem: no consensus on how expectations are formed (beyond FIRE fails), precisely how they affect the real economy, etc.

• In general, the optimal policy for addressing non-rational expectations is characterized by a sufficient statistic: **the belief distortion**

- In general, the optimal policy for addressing non-rational expectations is characterized by a sufficient statistic: **the belief distortion**
- The policymaker does *not* need to know:

- In general, the optimal policy for addressing non-rational expectations is characterized by a sufficient statistic: **the belief distortion**
- The policymaker does not need to know:
 - How agents form expectations

- In general, the optimal policy for addressing non-rational expectations is characterized by a sufficient statistic: **the belief distortion**
- The policymaker does not need to know:
 - How agents form expectations
 - The entire economic model

- In general, the optimal policy for addressing non-rational expectations is characterized by a sufficient statistic: **the belief distortion**
- The policymaker does not need to know:
 - How agents form expectations
 - The entire economic model
- The policymaker only needs to:

- In general, the optimal policy for addressing non-rational expectations is characterized by a sufficient statistic: **the belief distortion**
- The policymaker does not need to know:
 - How agents form expectations
 - The entire economic model
- The policymaker only needs to:
 - Measure peoples' expectations

- In general, the optimal policy for addressing non-rational expectations is characterized by a sufficient statistic: **the belief distortion**
- The policymaker does not need to know:
 - How agents form expectations
 - The entire economic model
- The policymaker only needs to:
 - Measure peoples' expectations
 - Know how decisions (equilibrium conditions) are directly distorted by non-rational expectations

• Applies to a general class of linear DSGE models

- Applies to a general class of linear DSGE models
- To recover the FIRE equilibrium, the policymaker needs "enough" tools: the **Sentiment Spanning** condition

- Applies to a general class of linear DSGE models
- To recover the FIRE equilibrium, the policymaker needs "enough" tools: the **Sentiment Spanning** condition
- Without Sentiment Spanning:

- Applies to a general class of linear DSGE models
- To recover the FIRE equilibrium, the policymaker needs "enough" tools: the **Sentiment Spanning** condition
- Without Sentiment Spanning:
 - Cannot recover FIRE exactly

- Applies to a general class of linear DSGE models
- To recover the FIRE equilibrium, the policymaker needs "enough" tools: the **Sentiment Spanning** condition
- Without Sentiment Spanning:
 - Cannot recover FIRE exactly
 - But the **belief distortion** is still a sufficient statistic for the optimal policy!

- Applies to a general class of linear DSGE models
- To recover the FIRE equilibrium, the policymaker needs "enough" tools: the **Sentiment Spanning** condition
- Without Sentiment Spanning:
 - Cannot recover FIRE exactly
 - But the **belief distortion** is still a sufficient statistic for the optimal policy!
- Work through simple examples for both cases

General Framework

• General model:

$$B_{X1}\mathbb{E}_{t}^{b}[X_{t+1}] = B_{X0}X_{t} + B_{Y}Y_{t} + B_{G}G_{t}$$
(1)

- $\mathbb{E}_t^b[\cdot]$: behavioral expectation of type b
- X_t: endogenous variables
- Y_t: exogenous variables
- *G_t*: policy variables
- A behavioral expectations equilibrium:
 - 1. X_t , Y_t , and G_t satisfy the equilibrium condition (1)
 - 2. Y_t , X_t and G_t are stationary, linear in the history of shocks $\{\omega_{t-j}\}_{j=0}^{\infty}$
 - 3. G_t satisfies a policy rule
- For now: assume FIRE equilibrium X_t^* is welfare-maximizing, unique

• Behavioral expectation operator \mathbb{E}^b_t allows for:

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations
 - Simple information frictions

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations
 - Simple information frictions
- What is not allowed?

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations
 - Simple information frictions
- What is not allowed?
 - Learning (with non-stationarity)

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations
 - Simple information frictions
- What is not allowed?
 - Learning (with non-stationarity)
 - Non-linearities

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations
 - Simple information frictions
- What is not allowed?
 - Learning (with non-stationarity)
 - Non-linearities
- Allowed with caveats?

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations
 - Simple information frictions
- What is not allowed?
 - Learning (with non-stationarity)
 - Non-linearities
- Allowed with caveats?
 - Information frictions with endogenous signals

- Behavioral expectation operator \mathbb{E}^b_t allows for:
 - Forward-looking behavioral expectations, e.g. *Diagnostic Expectations, Sticky Information*
 - Backward-looking heuristics, e.g. Adaptive Expectations
 - Simple information frictions
- What is not allowed?
 - Learning (with non-stationarity)
 - Non-linearities
- Allowed with caveats?
 - Information frictions with endogenous signals
- See Adams (2023) for technical details

- $\mathbb{E}_t[\cdot]$ (with no *b* specified) denotes the *rational expectation*
- Define the **belief distortion** as

$$\mathbb{D}_t^b[X_{t+1}] \equiv \mathbb{E}_t^b[X_{t+1}] - \mathbb{E}_t[X_{t+1}]$$

- In a model, it is specific to the type b of behavioral expectations
- In the data, requires measuring agents' expectations $\mathbb{E}_t^b[X_{t+1}]$, and estimating the rational expectation $\mathbb{E}_t[X_{t+1}]$

Lemma

If there is a time series of policy instruments G_t such that the non-rational equilibrium is consistent with the policy-less FIRE equilibrium, then G_t satisfies

$$B_{X1}\mathbb{D}_t^b[X_{t+1}]=B_GG_t$$

Proof Outline:

• In the FIRE equilibrium with $G_t = 0$, endogenous vector X_t^* satisfies:

$$B_{X1}\mathbb{E}_t\left[X_{t+1}^*\right] = B_{X0}X_t^* + B_YY_t$$

• Subtract from the non-rational model to get:

$$B_{X1}\mathbb{E}_{t}^{b}[X_{t+1}] - B_{X1}\mathbb{E}_{t}[X_{t+1}^{*}] = B_{X0}(X_{t} - X_{t}^{*}) + B_{G}G_{t}$$

• Impose $X_t = X_t^*$, and rearrange.

Sentiment Spanning: Definition

- What policy instruments are enough to recover FIRE?
- Some notation:
 - *B*_{C1} is submatrix of *B*_{X1} corresponding to control variables (there is no belief distortion about pre-determined state variables)
 - $P_G \equiv B_G (B'_G B_G)^{-1} B'_G$ is projection onto column space of B_G .

Condition (Sentiment Spanning)

The macroeconomic model defined in (1) is said to satisfy Sentiment Spanning if

$$(I-P_G)B_{C1}=0$$

Sentiment Spanning in Practice

• When is Sentiment Spanning satisfied?
- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$

- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$
 - ... need at least as many policy instruments that span forward-looking equations (row space of B_{C1})

- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$
 - ... need at least as many policy instruments that span forward-looking equations (row space of B_{C1})
- Examples:

- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$
 - ... need at least as many policy instruments that span forward-looking equations (row space of B_{C1})
- Examples:
 - RBC model has one forward-looking equation: needs one policy affecting intertemporal wedge

- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$
 - ... need at least as many policy instruments that span forward-looking equations (row space of B_{C1})
- Examples:
 - RBC model has one forward-looking equation: needs one policy affecting intertemporal wedge
 - NK model has two forward-looking equations (EE and NKPC): needs two policy instruments

- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$
 - ... need at least as many policy instruments that span forward-looking equations (row space of B_{C1})
- Examples:
 - RBC model has one forward-looking equation: needs one policy affecting intertemporal wedge
 - NK model has two forward-looking equations (EE and NKPC): needs two policy instruments
- Policymaker does not need to know the whole model to evaluate SS! Needs to know:

- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$
 - ... need at least as many policy instruments that span forward-looking equations (row space of B_{C1})
- Examples:
 - RBC model has one forward-looking equation: needs one policy affecting intertemporal wedge
 - NK model has two forward-looking equations (EE and NKPC): needs two policy instruments
- Policymaker does not need to know the whole model to evaluate SS! Needs to know:
 - How expectations affect decisions (*B*_{C1})

- When is Sentiment Spanning satisfied?
 - In order to match dimensions of belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$
 - ... need at least as many policy instruments that span forward-looking equations (row space of B_{C1})
- Examples:
 - RBC model has one forward-looking equation: needs one policy affecting intertemporal wedge
 - NK model has two forward-looking equations (EE and NKPC): needs two policy instruments
- Policymaker does not need to know the whole model to evaluate SS! Needs to know:
 - How expectations affect decisions (B_{C1})
 - How policy instruments distort economy (B_G)

Theorem

If a model satisfies Sentiment Spanning, then the policy rule

$$G_t^{\dagger} = (B'_G B_G)^{-1} B'_G B_{C1} \mathbb{D}_t^b [X_{t+1}^C]$$
(2)

recovers the FIRE equilibrium.

- The belief distortion $\mathbb{D}_t^b[X_{t+1}^C]$ is a sufficient statistic!
- Why does Sentiment Spanning matter? Invert the Lemma $B_{X1}\mathbb{D}_t^b[X_{t+1}] = B_G G_t$

• Behavioral RBC model

- Behavioral RBC model
- Belief distortions affect single equation: capital Euler

- Behavioral RBC model
- Belief distortions affect single equation: capital Euler
- Policy: capital taxation (Sentiment Spanning satisfied!)

- Behavioral RBC model
- Belief distortions affect single equation: capital Euler
- Policy: capital taxation (Sentiment Spanning satisfied!)
- Optimal policy: tax capital when agents are overly optimistic about future returns

Example 1: Decentralized Equilibrium Conditions

• Policymakers have light information requirements:

Euler Equation: Labor Supply: Production Function: Capital Demand: Labor Demand: Resource Constraint: $\tau_{t} = \sigma c_{t} + \mathbb{E}_{t}^{b} [-\sigma c_{t+1} + \overline{R} r_{t+1}]$ $w_{t} = \sigma c_{t} + \eta n_{t}$ $y_{t} = a_{t} + \alpha k_{t-1} + (1 - \alpha) n_{t}$ $r_{t} = y_{t} - k_{t-1}$ $w_{t} = y_{t} - n_{t}$ $\overline{Y} y_{t} = \overline{C} c_{t} + \overline{K} (k_{t} - (1 - \delta) k_{t-1})$

Example 1: Decentralized Equilibrium Conditions

• Policymakers have light information requirements:

Euler Equation: $\tau_t = \sigma c_t + \mathbb{E}_t^b [-\sigma c_{t+1} + \overline{R} r_{t+1}]$ Labor Supply: $w_t = \sigma c_t + \eta n_t$ Production Function: $y_t = a_t + \alpha k_{t-1} + (1 - \alpha) n_t$ Capital Demand: $r_t = y_t - k_{t-1}$ Labor Demand: $w_t = y_t - n_t$ Resource Constraint: $\overline{Y}y_t = \overline{C}c_t + \overline{K}(k_t - (1 - \delta)k_{t-1})$

• Optimal policy: $\tau_t^{\dagger} = \mathbb{D}_t^b [-\sigma c_{t+1} + \overline{R}r_{t+1}]$

Rational Expectations: Diagnostic Expectations: Cognitive Discounting:

$$\mathbb{E}_t^{RE}[x_{t+1}] = \mathbb{E}_t[x_{t+1}]$$
$$\mathbb{E}_t^{DE}[x_{t+1}] = (1 + \theta^{DE})\mathbb{E}_t[x_{t+1}] - \theta^{DE}\mathbb{E}_{t-1}[x_{t+1}]$$
$$\mathbb{E}_t^{CD}[x_{t+1}] = \theta^{CD}\mathbb{E}_t[x_{t+1}]$$

Example 1: Response of Expectations to a Productivity Shock

• Behavioral New Keynesian model: will consider deviations from FIRE-optimal policy

- Behavioral New Keynesian model: will consider deviations from FIRE-optimal policy
- Belief distortions affect two equations: Euler and NK Phillips Curve

- Behavioral New Keynesian model: will consider deviations from FIRE-optimal policy
- Belief distortions affect two equations: Euler and NK Phillips Curve
- Policies:

- Behavioral New Keynesian model: will consider deviations from FIRE-optimal policy
- Belief distortions affect two equations: Euler and NK Phillips Curve
- Policies:
 - If you have monetary and fiscal policy, Sentiment Spanning is satisfied

- Behavioral New Keynesian model: will consider deviations from FIRE-optimal policy
- Belief distortions affect two equations: Euler and NK Phillips Curve
- Policies:
 - If you have monetary and fiscal policy, Sentiment Spanning is satisfied
 - ... but with only monetary, FIRE cannot be recovered

- Behavioral New Keynesian model: will consider deviations from FIRE-optimal policy
- Belief distortions affect two equations: Euler and NK Phillips Curve
- Policies:
 - If you have monetary and fiscal policy, Sentiment Spanning is satisfied
 - ... but with only monetary, FIRE cannot be recovered
- Both cases: raise interest rates when agents misperceive the economy to be running hot

New Keynesian Phillips Curve: $\psi f_t = \kappa y_t - \pi_t - z_t^{PC} + \beta \mathbb{E}_t^b[\pi_{t+1}]$ Euler Equation: $i_t = -\sigma y_t - z_t^{EE} + \mathbb{E}_t^b[\sigma y_{t+1} + \pi_{t+1}]$

Expectation components of optimal policy are:

$$\hat{f}_t^{\dagger} = \frac{\beta}{\psi} \mathbb{D}_t^b \left[\hat{\pi}_{t+1} \right] \qquad \qquad \hat{i}_t^{\dagger} = \mathbb{D}_t^b \left[\sigma y_{t+1} + \pi_{t+1} \right]$$

Implementation:

- Measure agents' expectations $\mathbb{E}_t^b[\cdot]$,
- Estimate the rational expectation, e.g. with a VAR (Adams and Barrett 2024)

Example 2: Estimated Belief Distortions and Implied Policies

- With assumptions thus far:
 - Optimal policy is easy to calculate
 - Belief distortions are sufficient statistics
 - Policymakers do not need to know (most of) the model

- With assumptions thus far:
 - Optimal policy is easy to calculate
 - Belief distortions are sufficient statistics
 - Policymakers do not need to know (most of) the model
- What happens when we relax some assumptions?

- With assumptions thus far:
 - Optimal policy is easy to calculate
 - Belief distortions are sufficient statistics
 - Policymakers do not need to know (most of) the model
- What happens when we relax some assumptions?
 - 1. What if Sentiment Spanning fails?

- With assumptions thus far:
 - Optimal policy is easy to calculate
 - Belief distortions are sufficient statistics
 - Policymakers do not need to know (most of) the model
- What happens when we relax some assumptions?
 - 1. What if Sentiment Spanning fails?
 - 2. What if belief distortions are not perfectly observed?

- With assumptions thus far:
 - Optimal policy is easy to calculate
 - Belief distortions are sufficient statistics
 - Policymakers do not need to know (most of) the model
- What happens when we relax some assumptions?
 - 1. What if Sentiment Spanning fails?
 - 2. What if belief distortions are not perfectly observed?
 - 3. What if expectation formation is endogenous?

- With assumptions thus far:
 - Optimal policy is easy to calculate
 - Belief distortions are sufficient statistics
 - Policymakers do not need to know (most of) the model
- What happens when we relax some assumptions?
 - 1. What if Sentiment Spanning fails?
 - 2. What if belief distortions are not perfectly observed?
 - 3. What if expectation formation is endogenous?
- ... intuition goes through, although implementation may change

• Relax assumptions of SS, FIRE optimality

- Relax assumptions of SS, FIRE optimality
- Can no longer recover the first-best equilibrium; instead try to get as close as possible

- Relax assumptions of SS, FIRE optimality
- Can no longer recover the first-best equilibrium; instead try to get as close as possible
- Policymakers now need to know the whole economic model

- Relax assumptions of SS, FIRE optimality
- Can no longer recover the first-best equilibrium; instead try to get as close as possible
- Policymakers now need to know the whole economic model
- ... but they still do not need to know how expectations are formed!

- First-best equilibrium: X_t^* , with FIRE-optimal policy G_t^*
- Policymakers with no information commit to a policy rule (Rottemburg and Woodford 1997)
- Minimize quadratic loss for some W:

$$\min \mathbb{E}\left[(X_t - X_t^*)'W(X_t - X_t^*)\right]$$
Theorem

The constrained-optimal policy rule is

$$G_t^{\dagger} = \underbrace{B_G^+ P_W B_{C1} \mathbb{D}_t^b[X_{t+1}^C]}_{t} + G_t^{RE}$$

expectation component

matrix details

• Economic component G_t^{RE} follows the FIRE policy rule

Theorem

The constrained-optimal policy rule is

$$G_t^{\dagger} = \underbrace{B_G^+ P_W B_{C1} \mathbb{D}_t^b[X_{t+1}^C]}_{t} + G_t^{RE}$$

expectation component

matrix details

- Economic component G_t^{RE} follows the FIRE policy rule
- Expectation component $B_G^+ P_W B_{C1} \mathbb{D}_t^b [X_{t+1}^C]$ has the same information requirements as the original case with sentiment spanning

Theorem

The constrained-optimal policy rule is

$$G_t^{\dagger} = \underbrace{B_G^+ P_W B_{C1} \mathbb{D}_t^b[X_{t+1}^C]}_{t} + G_t^{RE}$$

expectation component

matrix details

- Economic component G_t^{RE} follows the FIRE policy rule
- Expectation component $B_G^+ P_W B_{C1} \mathbb{D}_t^b [X_{t+1}^C]$ has the same information requirements as the original case with sentiment spanning
- if you already have the FIRE optimal policy, adding the response to
 non-rational expectations requires no additional modeling assumptions, only
 measuring the belief distortion!

New Keynesian Phillips Curve: $0 = \kappa y_t - \pi_t - z_t^{PC} + \beta \mathbb{E}_t^k [\pi_{t+1}]$ Euler Equation: $i_t = -\sigma y_t - z_t^{EE} + \mathbb{E}_t^b [\sigma y_{t+1} + \pi_{t+1}]$

Expectation component of optimal policy is:

$$\hat{i}_t^{\dagger} - i_t^{RE} = \sigma \mathbb{D}_t^b[y_{t+1}] + \left(1 - \beta \frac{b_\pi \kappa \sigma}{b_\pi \kappa^2 + b_y}\right) \mathbb{D}_t^b[\pi_{t+1}]$$

which cannot recover FIRE without an additional tool.

If $\left(1 - \beta \frac{b_{\pi} \kappa \sigma}{b_{\pi} \kappa^2 + b_y}\right) > 0$, raise rates when agents misperceive economy is "running hot". • Speedy Conclusion

Example 3: Response of Expectations to a Cost-Push Shock

What if Belief Distortions are Measured with Error?

• Policymaker's observation D_t of the belief distortion is

 $D_t = \xi \mathbb{D}_t^b[X_{t+1}] + v_t$

with i.i.d. measurement error $v_t \sim N(0, \sigma_v^2)$

What if Belief Distortions are Measured with Error?

• Policymaker's observation D_t of the belief distortion is

$$D_t = \xi \mathbb{D}_t^b [X_{t+1}] + \upsilon_t$$

with i.i.d. measurement error $v_t \sim N(0, \sigma_v^2)$

Form the *policymaker's* nowcast of the belief distortion D^b_t[X^C_{t+1}] conditional on info. set Ω_t (D_t and other observables):

 $\hat{D}_t = \mathbb{E}[\mathbb{D}_t^b[X_{t+1}^C]|\Omega_t]$

What if Belief Distortions are Measured with Error?

• Policymaker's observation D_t of the belief distortion is

$$D_t = \xi \mathbb{D}_t^b [X_{t+1}] + \upsilon_t$$

with i.i.d. measurement error $v_t \sim N(0, \sigma_v^2)$

Form the *policymaker's* nowcast of the belief distortion D^b_t[X^C_{t+1}] conditional on info. set Ω_t (D_t and other observables):

$$\hat{D}_t = \mathbb{E}[\mathbb{D}_t^b[X_{t+1}^C]|\Omega_t]$$

• Theorem The constrained-optimal policy rule is

$$G_t^{\dagger} = B_G^+ P_W B_{C1} \hat{D}_t + G_t^{RE}$$

... same as the solution without Sentiment Spanning, except using \hat{D}_t !

We assumed that policy does not affect the expectations operator

 \mathbb{E}_t^b
 ; this
 precludes e.g. learning from endogenous signals

- Now let the operator $\mathbb{E}_t^b[\cdot;\mathcal{G}]$ depend on the policy *rule* \mathcal{G}

- Now let the operator $\mathbb{E}_t^b[\cdot;\mathcal{G}]$ depend on the policy *rule* \mathcal{G}
- Return to simple case: sentiment spanning holds, FIRE is optimal

• Lemma 1 still true! If G_t recovers FIRE, it must satisfy

 $B_G G_t = B_{X1} \mathbb{D}_t^b [X_{t+1}; \mathcal{G}]$

What if Expectation Formation is Endogenous? (Results)

• Lemma 1 still true! If G_t recovers FIRE, it must satisfy

 $B_G G_t = B_{X1} \mathbb{D}_t^b [X_{t+1}; \mathcal{G}]$

• \implies Theorem 1 *equation* still true! If G_t^{\dagger} exists:

$$G_t^{\dagger} = (B_G' B_G)^{-1} B_G' B_{C1} \mathbb{D}_t^b [X_{t+1}^C; \mathcal{G}]$$
(3)

What if Expectation Formation is Endogenous? (Results)

• Lemma 1 still true! If G_t recovers FIRE, it must satisfy

 $B_G G_t = B_{X1} \mathbb{D}_t^b [X_{t+1}; \mathcal{G}]$

• \implies Theorem 1 *equation* still true! If G_t^{\dagger} exists:

$$G_t^{\dagger} = (B_G' B_G)^{-1} B_G' B_{C1} \mathbb{D}_t^b [X_{t+1}^C; \mathcal{G}]$$
(3)

• ... but Theorem 1 statement is false, because of $\mathbb{D}_t^b[X_{t+1}^C; \mathcal{G}]$ nonlinearity

What if Expectation Formation is Endogenous? (Results)

• Lemma 1 still true! If G_t recovers FIRE, it must satisfy

 $B_G G_t = B_{X1} \mathbb{D}_t^b [X_{t+1}; \mathcal{G}]$

• \implies Theorem 1 *equation* still true! If G_t^{\dagger} exists:

$$G_t^{\dagger} = (B_G' B_G)^{-1} B_G' B_{C1} \mathbb{D}_t^b [X_{t+1}^C; \mathcal{G}]$$
(3)

... but Theorem 1 statement is false, because of D^b_t[X^C_{t+1}; G] nonlinearity
 G[†]_t may not be unique

• Lemma 1 still true! If G_t recovers FIRE, it must satisfy

 $B_G G_t = B_{X1} \mathbb{D}_t^b [X_{t+1}; \mathcal{G}]$

• \implies Theorem 1 equation still true! If G_t^{\dagger} exists:

$$G_t^{\dagger} = (B_G' B_G)^{-1} B_G' B_{C1} \mathbb{D}_t^b [X_{t+1}^C; \mathcal{G}]$$
(3)

- ... but Theorem 1 statement is false, because of $\mathbb{D}_t^b[X_{t+1}^C; \mathcal{G}]$ nonlinearity
 - G_t^{\dagger} may not be unique
 - G_t^{\dagger} may not even exist! (example in sec. 6.2.2)

• The optimal policy problem for resolving distortions due to non-rational expectations is easy!

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions
 - Improving measures of relevant agents' expectations

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions
 - Improving measures of relevant agents' expectations
 - Estimation of the rational expectation (do better than a VAR)

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions
 - Improving measures of relevant agents' expectations
 - Estimation of the rational expectation (do better than a VAR)
- Early applied work *The Optimal Monetary Policy Response to Belief Distortions: Model-Free Evidence* draws similar conclusions about monetary policy

Theorem

The constrained-optimal policy rule is

$$G_t^{\dagger} = B_G^+ P_W B_{C1} \mathbb{D}_t^b [X_{t+1}^C] + B_G^+ P_W B_{X1} \mathbb{E}_t [X_{t+1} - X_{t+1}^*] + G_t^*$$

•
$$B_{G}^{+} \equiv (B_{G}^{\prime}B_{G})^{-1}B_{G}^{\prime}$$
, $P_{W} \equiv B_{G} \left(B_{G}^{\prime}\tilde{W}B_{G}\right)^{-1}B_{G}^{\prime}\tilde{W}$, $\tilde{W} \equiv \left(B_{X0}^{-1}\right)^{\prime}WB_{X0}^{-1}$

Theorem

The constrained-optimal policy rule is

$$G_t^{\dagger} = B_G^+ P_W B_{C1} \mathbb{D}_t^b [X_{t+1}^C] + B_G^+ P_W B_{X1} \mathbb{E}_t [X_{t+1} - X_{t+1}^*] + G_t^*$$

•
$$B_{G}^{+} \equiv (B_{G}^{\prime}B_{G})^{-1}B_{G}^{\prime}$$
, $P_{W} \equiv B_{G} \left(B_{G}^{\prime}\tilde{W}B_{G}\right)^{-1}B_{G}^{\prime}\tilde{W}$, $\tilde{W} \equiv \left(B_{X0}^{-1}\right)^{\prime}WB_{X0}^{-1}$

• Optimal policy G_t^{\dagger} has two components

Theorem

The constrained-optimal policy rule is

$$G_t^{\dagger} = \underbrace{B_G^{\dagger} P_W B_{C1} \mathbb{D}_t^b[X_{t+1}^C]}_{expectation \ component} + B_G^{\dagger} P_W B_{X1} \mathbb{E}_t[X_{t+1} - X_{t+1}^*] + G_t^*$$

•
$$B_{G}^{+} \equiv (B_{G}^{\prime}B_{G})^{-1}B_{G}^{\prime}$$
, $P_{W} \equiv B_{G} \left(B_{G}^{\prime}\tilde{W}B_{G}\right)^{-1}B_{G}^{\prime}\tilde{W}$, $\tilde{W} \equiv \left(B_{X0}^{-1}\right)^{\prime}WB_{X0}^{-1}$

- Optimal policy G_t^{\dagger} has two components
 - 1. Expectation component: As before $\mathbb{D}_t^b[X_{t+1}^C]$ is a sufficient statistic, you do not need to know how expectations are formed, etc.

Theorem

The constrained-optimal policy rule is

$$G_{t}^{\dagger} = \underbrace{B_{G}^{+} P_{W} B_{C1} \mathbb{D}_{t}^{b} [X_{t+1}^{C}]}_{expectation \ component} + \underbrace{B_{G}^{+} P_{W} B_{X1} \mathbb{E}_{t} [X_{t+1} - X_{t+1}^{*}] + G_{t}^{*}}_{economic \ component}$$

•
$$B_{G}^{+} \equiv (B_{G}^{\prime}B_{G})^{-1}B_{G}^{\prime}$$
, $P_{W} \equiv B_{G} \left(B_{G}^{\prime}\tilde{W}B_{G}\right)^{-1}B_{G}^{\prime}\tilde{W}$, $\tilde{W} \equiv \left(B_{X0}^{-1}\right)^{\prime}WB_{X0}^{-1}$

- Optimal policy G_t^{\dagger} has two components
 - 1. Expectation component: As before $\mathbb{D}_t^b[X_{t+1}^C]$ is a sufficient statistic, you do not need to know how expectations are formed, etc.
 - 2. Economic component: optimal policy for FIRE model

1. What if Sentiment Spanning fails?

- 1. What if Sentiment Spanning fails?
 - Belief distortion component is (mostly) unchanged

- 1. What if Sentiment Spanning fails?
 - Belief distortion component is (mostly) unchanged
- 2. What if belief distortions are not perfectly observed?

- 1. What if Sentiment Spanning fails?
 - Belief distortion component is (mostly) unchanged
- 2. What if belief distortions are not perfectly observed?
 - Just use the best *nowcast*

- 1. What if Sentiment Spanning fails?
 - Belief distortion component is (mostly) unchanged
- 2. What if belief distortions are not perfectly observed?
 - Just use the best *nowcast*
- 3. What if expectation formation is endogenous?

- 1. What if Sentiment Spanning fails?
 - Belief distortion component is (mostly) unchanged
- 2. What if belief distortions are not perfectly observed?
 - Just use the best *nowcast*
- 3. What if expectation formation is endogenous?
 - Optimal rule unchanged; lose existence/uniqueness from the main theorem
• The optimal policy problem for resolving distortions due to non-rational expectations is easy!

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions
 - Improving measures of relevant agents' expectations

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions
 - Improving measures of relevant agents' expectations
 - Estimation of the rational expectation (do better than a VAR)

- The optimal policy problem for resolving distortions due to non-rational expectations is easy!
 - BEET (toolkit for solving behavioral models) checks sentiment spanning, calculates optimal policy rule
- Caveats:
 - Dynamic distortions in linear models
 - Requires care to write model in appropriate form
 - Applies to stationary models (no learning... yet!)
- Institutions should work hard on measuring belief distortions
 - Improving measures of relevant agents' expectations
 - Estimation of the rational expectation (do better than a VAR)
- Early applied work *The Optimal Monetary Policy Response to Belief Distortions: Model-Free Evidence* draws similar conclusions about monetary policy